
1.  Unity Test Tools Documentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
1.1  Examples provided with the framework  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
1.2  How to use the Assertion Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
1.3  How to use the Integration Test Framework  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
1.4  How to use Unit Test Runner  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
1.5  Using Assertion Component with Integration Tests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15



Unity Test Tools Documentation
Contents

Unity Test Tools
Integration Test Framework
Assertion component
Unit Test Runner
NSubstitute library
Examples

Known issues and limitations
Compatibility

Unity Test Tools

Integration Test Framework

Integration Tests allow you to automate the verification process of your assets directly in a scene. They are designed to be used on existing
content, directly within the Editor, to build tests which verify the behaviour of single assets or the interaction between them.

How to use Integration Test Framework

Assertion component

The Assertion Component is used to setup invariants on GameObjects. Setting up the component doesn't require writing any code - it's all
done in the Editor UI. It is easily extensible, customizable, and can be configured for your own needs. 

How to use the Assertion Component

Using Assertion Component with Integration Tests

Unit Test Runner

The integration of the NUnit Framework in the Editor allows you to execute unit tests from inside Unity. This means you can instantiate
GameObjects and operate on them which would not be possible outside of Unity. We provide an integrated test runner that runs the tests
and reports results.

How to use Unit Test Runner

NSubstitute library

NSubstitute is shipped with the Unity Test Framework. Please use its documentation for help:  http://nsubstitute.github.io/help.html

Examples

Examples provided with the framework

Known issues and limitations
The Integration Test Framework works only when the Integration Test Runner Window is visible
NSubstitute that comes with the framework is not threadsafe.

Compatibility
The framework is compatible with Unity 4.X.

Examples provided with the framework

Scene examples

The examples are located int the  folder. Examples

IntegrationTestsExample.unity scene

This scene shows the functionality of the Game Tests runner. To work with it you need to open the runner (menu Tests/Game Test
 or ). You will find 6 examples. On the scene there are also two common objects (prefabs) shared by all tests: Runner,  ctrl+alt+shift+t

 and . The prefabs are simple objects with colliders attached and scripts that call CubeTriggerFailure CubeTriggerSuccess Testing.Fai

http://nsubstitute.github.io/help.html


 and , respectively. The tests show the technical side of the framework, therefore the examples may seeml() Testing.Succeed()
trivial. The tests on the scene have the following purpose:

Test1 - Success
A sphere falls onto a cube that triggers success. Results in a successful test.
Test2 - Timeout
A test has a very low (0.1 seconds) timeout value and the sphere won't have enough time to fall on the trigger cube.
Test3 - Failure
A sphere falls onto a cube that triggers failure. Results in a failed test.
Test4 - Ignored
Test with  check set. Will be ignored when running all tests.ignore
Test with Assertions
Test with   checked. The sphere is this test has two assertions set: Succeed after all assertions are executed

first one checks in OnStart callback if the sphere's renderer is rendered by the camera

second one checks if the sphere and the camera share the same parent object

Test with Assertion Fails
first one checks in OnStart callback if the renderer is rendered by the camera

second one checks if the sphere's transform.position is equal to transform.position of the camera. This condition is
not true, therefore the test will fail. 



Test throwing exception
A test that will succeeds when an exception is thrown. In this case the exception has to be CustomException or derive from
this type.

AssertionExampleScene.unity scene

A simple example of how to use the Assertion Component to debug undesired state. The scene contains a sphere falling onto a
plane and rolling out of it. We set two assertions on the sphere.  First assertion verifies that the sphere needs to be rendered in the
camera on every OnUpdate call. Second assertion makes sure the y value of the position vector of the sphere is always higher than
y value of plane's position vector. In other words the sphere can not fall below the plane. 

AngryBotsTests/TestScene.unity scene

This example uses assets from Unity's example project, Angry Bots. Two prefabs from Angry Bots are used:  and PlayerPrefab Enem
. The first one is a standard player controller. The other prefab is an enemy spider that wakes up when the the playerySpider

approaches it. On this test scene we want to check three things: 
The spider wakes up and walks towards the player when the player is close enough
The spider doesn't wake up when the player is not close enough
The spider does damage to the player when it explodes

The scene uses Game Tests to automate this procedure. You will find following tests on the scene:
Test_PlayerReceivesDamageWhenSpiderExplodes
The spider attacks the player and explodes. To verify the player has taken damage there is a Damage Signal set to call
Testing.Succeed method (You can find it on the player prefab in the  script).Health
Test_SpiderSleepsWhenPlayerNotInRange
The player is set to be outside of spider's visibility range to make sure it doesn't wake up and attack the player. The
verification is done by setting the   between the spider and the player that would fail the test if the spiderCubeTriggerFailure
has stepped on it. Additionally, there is a GameObject with assertion that is checked after some period of time that spider's
attack move controller is disabled. This makes sure that the spider is still in sleep mode. The test will succeed when the
assertion is checked.
Test_SpiderWakesWhenPlayerInRange
The player is situated within the range of spider's visibility. The spider wakes up and starts to move towards the player.
Between the spider and the player there is a   that call Testing.Succeed() on collision. When the spiderCubeTriggerSuccess
walks toward the player, it steps on the trigger and the test passes.

NUnit Examples
SampleTests.cs contains examples showing the basic NUnit usage.

public void   fails due to the exception thrown.ExceptionTest()
public void  shows the usage of ignore attribute.IgnoredTest()
public void a test which takes 1 second to run. You can try to the  option on it.SlowTest(), Notify when test is slow 
public void - demonstrates the usage of assertions and fails due to the call of Assert.Fail().FailingTest() 
public void  - demonstrates the usage of assertions and succeeds due to the call of Assert.Pass().PassingTest()
ParameterizedTest, RandomTest, RangeTest show capabilities of nUnit.

NSubstituteDemo.cs contains classes needed to demonstrate the usage of  in a simple scenario.NSubstitute

IGameEvent - an interface that represents an abstract game event.



1.  

2.  
3.  

a.  
b.  
c.  

4.  
a.  
b.  
c.  

5.  
6.  
7.  

a.  
8.  

IGameEventListener - an interface that represents an abstract event consumer.

GameEventSink - is an object that gets events from the system and passes them to registered listeners.

A test RegisteredEventListenersGetEvents checks that ReceiveEvent method was called on a registered listener that represents
IGameEventListener.

A substitute for IGameEventListener is used instead of concrete implementation.

public void RegisteredEventListenersGetEvents()
{
GameEventSink sink = new GameEventSink();
//a proxy for IGameEventListener is created. 
IGameEventListener listener = Substitute.For<IGameEventListener>(); 
sink.RegisterListener(listener); 
sink.ReceiveEvent(Substitute.For<IGameEvent>()); 
//In this line a check that the method was called (with any arguments). 
listener.Received().ReceiveEvent(Arg.Any<IGameEvent>()); 
}

Please refer to NSubstitute to learn more about NSubstitute functionality.documentation 

 

How to use the Assertion Component

Assertion Component overview

The Assertion Component brings you the possibility to assert desired states of your game objects. It's a visual tool that doesn't require writing
any code. It was designed to be extensible and adaptable to the content of your project and your needs. 

The way the component works is simple. You need to set up an invariant - a condition you expect to be always true. You specify when the
condition should be checked (for example every Update method). Now, when your project is running and an assertion you set fails, an
exception is throw. This way you get notified that your application got into an undesired state and you can investigate the issue. In most
cases you would want to have the " " option enabled in the  window to pause the run when an error occurs.Error pause Console

 

Comparer selector - A comparer defines how two values should be compared with each other. It determines the result of the
assertion.
Frequency of checks - Multiselectable control where you can define when the assertion should be checked.
Custom menu for  frequency option (see 2.) It won't be visible unless the option is selectedAfter period of time

After how many seconds should the first check be done
Should the checks be repeated
How often to repeat the checks

Custom menu for Update frequency option (see 2.) It won't be visible unless the option is selected
After how many frames first check should be done
Should the checks be repeated
How often to repeat the checks

First GameObject that is used in the compare method. By default it's the GameObject to which the component is attached
Custom field from the selected comparer ( ). In this case they define operation type and precision.Float Comparer
What to compare the object (selected in 5.) with.

It's possible to compare it with static value or null value
The other object to compare with.

http://nsubstitute.github.io/help.html


1.  

2.  

3.  

4.  

5.  

6.  

Setting up the Assertion Component

The Assertion Component is really easy to set up. A simple assertion can be set up in just a

few steps:

Choose the Comparer (1) that will be used when checking the assertions. A Comparer usually defines acceptable types which will be
a helpful filter when selecting property to compare
Select when you would like the assertion to be checked (2). Most of the callback methods of MonoBehaviour are available (like.
OnStart, OnUpdate). You can also set the time after you would like the check to be done ( ). OnUpdate andAfter period of time
AfterPeriodOfTime allow you to select an extra parameter defining the frequency of checks (3, 4).
Choose path to the property (5b) which value you would like to compare. The values will be filtered out based on types accepted by
selected Comparer. For example the Float Comparer accepts only float values, so only properties and fields of float type will be
presented.
A Comparer can expose fields which can be used to customize behaviour. For example the Float Comparer allow you to select the
type of compare operation (Equal, Greater, Less) and the precision of floating point operations (6).
Next, you can select what you would like to compare the value with. By default, you can compare it with another GameObject's
property. You can also compare it with a static value (if it's supported by the Comparer) or to null.
Depending on your previous choice, select the other value to compare with.

 

Assertion Component features:

Comparers

Comparers define the assertion action. A Comparer must derive from  class and implement the  methObjectComparerBase Compare
od. 

Example of a Comparer implementation:

 

1. A Comparer needs to inherit from  class. ObjectComparerBase

2. Any public serializable fields will be exposed in the Comparer. They can be used for customizing the Comparer. 

3. The Compare method will be called when the assertion is performed. It's an abstract method that takes as arguments two values



1.  

2.  
3.  
4.  
5.  

6.  

of types as defined by the Comparer. If types are not defined (the Comparer derives from non-generic ), theObjectComparerBase
argument will be of  type. System.Object

4. Additional customization can be done by overriding methods. The  method overrides default depth of propertyGetDepthOfSearch
search algorithm.

 

Selecting path to the property of a GameObject

When you select path to the desired property, the control will show you a list of fields which types are the same as Comparer's
accepted type. The list will contain properties of GameObject itself and properties of all Components attached to it, including custom
scripts.

Manual path selection

If the Comparer doesn't have accepted type specified, it is impossible to present possible value to pick from. You will need to type in
the path to the property by hand. The editor will give you a tip if such path might not be correct and will allow you to pick some
values form a hint list. Hint: if you press down arrow while typing the path, the path hints popup will be displayed.

Comparing to constant value

You can compare the first value with a static value you will provide in the component. To do that, in the   field select Compare to type
. If the type accepted by the Comparer is serializable by default in Unity, an appropriate control willCompare To Constant Value

appear to put in the values.

How to start

This steps will guide you through the process of setting up a simple Assertion Component

Create a new object on the scene, for example a Sphere, and add a Rigidbody component to it. Select the object and go the
Inspector
Add the Assertion Component
Select the Float Comparer
Select the OnUpdate as the moment to verify the assertion
Set the  to 10 as we don't need to verify the assertion every frame. Frequency of repetitions

Select  value.Sphere.Transform.position.y



6.  

7.  

8.  
9.  

10.  

11.  
12.  

Select Compare type to Greater as we want the   value to be always greater than the value we willSphere.Transform.position.y
compare it with.

Add another Game Object, for example a Cube, and place it somewhere below the first object.
Drag the cube's Game Object to the  field in the Assertion Component.Compare to
Selected path Cube.Transform.position.y

Run the scene
You will see the sphere falling down and once it falls below the cube, the editor should pause. It happened because the assertion
check has failed (the condition  was no longer valid).Sphere.Transform.position.y > Cube.Transform.position.y

Assertion Explorer

The Assertion Explorer is available from the menu. It shows all assertion placed on objects of the current scene. Most fieldsUnit Test Tools 
are read-only. You can only disable and enable single components from the explorer. It allows grouping the list and basic filtering.

FAQ - Frequently Asked Questions

What about performance? How can I exclude test code from release builds.

Unfortunately the public API (which we are base 100% on) doesn't allow exclusion of code at compile time. However, the Assertion
Component will destroy itself on initialization in non developers builds. This should reduce unnecessary overhead. If you really need to
exclude test framework classes, you need to do it manually before building.

Remarks

Known issue: The component will not work with a MonoBehaviour attached in which the class name starts with a lower case. 

 

 

How to use the Integration Test Framework



1.  
2.  
3.  
4.  
5.  
6.  

How to open the runner

You open the Integration Tests Runner from the menu bar  or by S  combination.Unity Test Tools/Integration Tests Runner hift+Ctrl+Alt+T

Other combinations:   - Run all tests,   - Run selected test(s).Ctrl+Alt+T Ctrl+T

How does the Integration Test Runner work?

The Integration Tests are designed to run on a separate scene. You can consider the scene where you place your tests as a test suite. One
test scene can contain multiple tests. You should not put your tests on your production scenes. Instead, create a separate scene for them. 

A Test Object is a GameObject on the scene that has TestComponent attached to it. Everything under the Test Object in the hierarchy is
considered to belong to this test. Any object that is not under a Test Object will be common for every test on the scene (it's usually
environment like floor, walls etc.). You shouldn't care about creating the Test Object manually. Everything is done through the Test Runner. 

Only one test can be active at any time. When you select a test, all other tests will become disabled (or hidden in the hierarchy view), so you
can work only with one test at a time.

This scene is an exemplary scene shipped with the framework. If you look at the hierarchy view you will notice 6 Test Objects. Each of them
has an icon showing the result from last time the test was run. In this example the  is the active selection, so all other tests areTest3 - Failure
disabled. This test contains only one GameObject, the Sphere. If you take a look at the scene now you will notice two additional cubes: red
and green. Those cubes are not places under any Test Object, so they will be shared by any test in the scene. In the hierarchy window you
will find them as  and . Additionally, you can also see a   object. This object is responsibleCubeTriggerSuccess CubeTriggerFailure TestRunner
for driving the test run once execution starts. It will be added automatically when you add the first test on a scene.

When you run the tests the following steps are performed by the runner:

Play mode is enabled
The first test gets enabled (becomes active)
Wait until the test has finished (or a timeout has occurred)
The current active test gets disabled
If there are more tests in the queue, enable next test and go to step 3
Report results and finish test run

How to control a test flow (How to start and finish a test)

A test starts once the Test Object gets enabled. The Test can finish its run in multiple ways:

Function  is called. This will successfully finish the test.Testing.Pass()
Function  is called. This will fail the test.Testing.Fail()
Execution times out. This can happen when none of the above functions is called within a specified period of time (you can set the
timeout value per test).
An unhandled exception is thrown. 
An expected exception is thrown (  must be checked)Expect exception
Every Assertion Component on objects under tests is checked at least once ( the "Succeed after all assertions are executed" option
needs to be selected)

Note that you can use a set of pre-made assets for controlling test flow. They are placed in the   foIntegrationTestsFramework / TestingAssets
lder.

Integration Test Runner

The Integration Test Runner window functionality:



1.  
2.  
3.  
4.  
5.  

6.  
7.  

8.  
9.  

10.  
11.  
12.  
13.  
14.  
15.  
16.  
17.  
18.  
19.  
20.  

21.  
22.  

1.  
2.  
3.  
4.  

Add new test - creates new test object on the scene
Run selected test(s).
Run all tests in the scene (excluding ignored tests) 
Options - general options for working with Integration Tests
Add GameObjects under selected test - when selected, when you add a new object to the scene it will be automatically placed under
the test GameObject instead of the hierarchy root
Block UI when running - when selected, a dialog will appear during test execution
Hide tests in hierarchy - when checked, only selected test will be visible in the Hierarchy. Otherwise, not selected tests are disabled
but visible in the hierarchy
Hide Test runner - if selected, the game object with test runner will be hidden in the hierarchy
Test Filter - will filter out tests where name does not not contain the string
Show succeeded - show tests that succeeded
Show failed - show tests that failed
Show ignored - show tests that are ignored
Show not runed - show tests that hasn't been run
Test list - list of all tests available in the scene
Test log and exception messages
Test name - name of the test
Included platform - on what platform the test should included
Timeout - number of second after the test will timeout
Ignored - ignore the test when running all tests
Succeed after all assertions are executed - select if the test should finish after all assertions from Game Object in the test got
checked at least once.
Expect exception - the test will not fail if an exception if thrown. 
Expected exception list - a list of exception that will not fail the test when thrown. Separate the exceptions with comma (","). Derived
types from types on the list will also be considered as expected. If the list is empty, any exception type will be accepted. 

Selected test
Result icon
Test Runner object
Common objects - objects that are not under a test node will be active in every test



1.  
2.  
3.  
4.  
5.  

6.  

7.  

8.  

9.  

Test context menu (right click on a test)

Icons

Creating simple tests

These steps will walk you through writing two simple tests:

Create a new scene that will contain the tests
Open the Integration Tests Runner Window. (in menu bar, Unity Test Tools/Integration Tests Runner, or ctrl+alt+shift+t)
Click the "plus" button to add new test and rename it to . Notice that a TestRunner object should be automatically added.Test Pass
Select the test
Add a Cube to the scene. If the   option is checked the Cube will automatically be placedAdd new GameObjects under selected test
under the test node. Otherwise move it there manually. 
The hierarchy should look like this:

Add a Rigidbody component to the cube. You can run the test and verify the cube is falling down. To run the test right click on it and
select  (you can also use ctrl+t combination if the test is selected). The test will timeout after 5 seconds (by default) because Run Tes

 was never called.ting.Pass()
Add another Cube below the first one that will call   on collision. You can use the test assets provided with theTesting.Pass()
framework. Find  prefab under  and put it on the sceneCubeTriggerSuccess  Assets\UnityTestFramework\IntegrationTestsFramework
below the first Cube so it will fall on it. If you look at the prefab you will see that it has a script attached. The script is responsible for
calling  in functionTesting.Pass()  OnCollisionEnter .
Rerun the test. The test should now pass.

Now, add another test, and an empty GameObject. Attach   script from the Testing Assets and make it fail after 1 second.CallTesting



9.  

10.  Try running both tests now. The result should be similar to this one:

Testing Assets

A few testing assets are provided with the framework:

CallTesting.cs script - allows you to call Testing.Pass() or Testing.Fail() automatically from selected methods or after a desired
amount of time or number of frames.

This configuration will make the test succeed if the object enters a collision (OnCollisionEnter) or gets destroyed (OnDestroy).
Otherwise, the test will fail after 3 seconds.
CubeTriggerSuccess,  - cube prefabs that will succeed/fail on OnTriggerEvent.CubeTriggerFailure

Reporting results

After each run a results XML file is created. It's located in project's root folder. Currently only Editor, Editor batchmode, and Standalone runs
support this feature.

Headless running (batch mode)

It is possible to run test from command line. In order to do that, run Unity in batch mode and execute UnityTest.UnitTestView.RunAllTestsBat
 method on start. Example: ch



>Unity.exe PATH_TO_YOUR_PROJECT -batchmode -executeMethod BatchTestRunner.RunAllTests
-testscene=IntegrationTestsExample

This will run all tests from   scene. Results are available in project's root folder.IntegrationTestsExample

Building a player with Integration Tests

It is possible to build a player from a scene with tests. Simply select the scene with tests you would like to build and then run it as a normal
application. Building multiple scenes is not supported at the moment (they will not run in succession).

 

How to use Unit Test Runner
How to open the Unit Test Runner

You open the Unit Test Runner from the menu bar  or by  combination.Unity Test Tools/Unit Test Runner shift+ctrl+alt+u

Getting Started with NUnit

After importing Unity Test Framework package, NUnit library(version 2.6.2) is included into your project. 

If you are new to NUnit please visit NUnit's guide to get started. This article demonstrates the development process with NUnit inQuick Start 
the context of a C# banking application.

To start your unit testing experience open the test runner window by clicking "Test -> Unit Test Runner" and it will show you the windows with
test  that are supplied with Unity Test Framework.examples 

How Unit Test Runner works

The Unit Test Runner uses NUnit library that's included into the project (nunit.core.dll, nunit.core.interfaces.dll, nunit.framework.dll). The
runner looks for tests in Assembly-CSharp.dll and Assembly-Editor-CSharp.dll. 

Before executing the tests the runner will open a new scene (unless you disable it in the options), therefore you may get a prompt to save
your scene. After the run is finished the previous scene will be loaded automatically in between the run no cleanup is done and it must be
done within the test suite if necessary. For managing  on the scene you can use the   class which provides you with aGameObjects UnityTest
method for creating  and does the cleanup automatically. GameObjects

It's recommended to keep the unit test files under Editor folder so they won't be included in the build.

Unit Tests Runner window

http://www.nunit.org/index.php?p=quickStart&r=2.2.10


1.  
2.  
3.  
4.  

5.  
6.  

7.  
8.  

 

Run selected test
Run all tests
Run failed tests
Options - show options panel 

Filter that allows to show only methods and classes that match the string in this field
Advanced button shows advanced filtering settings

Tests hierarchy window that shows the tests and the execution results
Displays the exception and the stacktrace for failed tests 

Reporting results

After each run an XML file is generated with nUnit style results. It's located in project's root folder.

Headless running (batch mode)

It is possible to run test from command line. In order to do that, run unity in batch mode and execute UnityTest.UnitTestView.RunAllTestsBat
 method on start. Example: ch

>Unity.exe -projectPath PATH_TO_YOUR_PROJECT -batchmode -executeMethod
UnityTest.UnitTestView.RunAllTestsBatch

This will run all available tests. Results are available in project's root folder.

Loading tests from files (unit test file context menu)



1.  
2.  
3.  
4.  

5.  
6.  
7.  

8.  

If you want to work with tests from one file only you can load them by right-clicking on a file and selecting Unity Test Tools / Load tests from
. this file

Remarks

Not every nUnit feature is yet supported. List of unsupported features: CategoryAttribute, RandomAttribute, ExplicitAttribute.

Using Assertion Component with Integration Tests
The Assertion Component can be used in Integration Tests to verify expected behaviour. When an Integration Test test is selected, in the
inspector you can select  option.Succeed on assertions

When the option is selected, there is no need to call the  or  methods explicitly for that test. The test runnerTesting.Succeed() Testing.Fail()
will check for all Assertion Component attached to every object under the test and pass if each Assertion was checked at least one time.

Getting started

Create new scene
Open the Integration Tests runner window. (in menu bar, , or )Unity Test Tools/Game Tests Runner ctrl+alt+shift+t
Create new test
In the inspector, check the  option.Succeed on assertions 

Add a Sphere to the scene and attach a Rigidbody component to it
Attach an Assertion Component
Configure the Assertion Component as follows:
Comparer: FloatComparer
Check: On Update
Value: Sphere.Rigidbody.velocity.magnitude
Compare Type: Less
Compare to type: Compare to constant value
Constant value: 10

This can be read as: Make sure in every Update call that velocity of the Sphere is always lower than 10

Start the test from the  window (or use  combination if the test is selected). The sphere will start to fallIntegration Tests Runner  ctrl+t
down and gain velocity. Once it's velocity reached 10, the assertion will fail, therefore the test will fail.

 


	Unity Test Tools Documentation
	Examples provided with the framework
	How to use the Assertion Component
	How to use the Integration Test Framework
	How to use Unit Test Runner
	Using Assertion Component with Integration Tests


