
	

	

	

VText	
Virtence	GmbH	
Altenburger	Str.	13	
04275	Leipzig	

VText 2.0
Unity Package

info@virtence.com	

Februar	15,	2017	

	

	

	

	

	 VText	 3	

2	 Details	

1 Quickstart
VText	 is	 Unity	 package	 to	 generate	 dynamic	 3D–Text	 geometry	 directly	 from	 truetype	
fonts	(.ttf or	.otf).		

	

The	main	features	are	

• Different	Materials	for	

– Frontface	
– Bevel	
– Sides	

• Kerning	

• Texture	layout	suitable	for	Lightmapping	

• Available	build	targets	

– Android	(Arm	32–bit)	
– Linux	(32/64–bit)	
– Windows	(32/64–bit)	
– OSX	(32/64–bit)	
– iOS	(Arm	32/64–bit)	

• Layout	along	AnimationCurve	
• Circular	bending	with	animatable	radius	
• Automatic	generation	of	Colliders	and	or	RigidBodies.	
• Experimental:	 Adding	 arbitrary	 components	 to	 each	 letter	 (like	 AudioSources,	
Animations,	Scripts,	etc)	
	 	

	

	 VText	 4	

2	 Details	

	
1.1 Install
After	importing	the	VText	package,	select	the	menu	Windows/Virtence/Setup VText...	
	
This	will	show	up	a	dialog	like	in	figure	1.			
	

	

Figure	1	–	Setup	

Just	follow	all	installation	steps.	You	can	go	to	the	next	step	by	clicking	the	“Next”	
button	in	the	lower	right.	
	
1.2 Demo scenes
Important!		
Before	opening	the	test	scenes,	ensure	you	setup	VText	like	in	section	1.1.	To	make	the	
demo	scenes	work	you	must	install	the	demo	fonts	we	provide.	You	can	do	that	in	Step 4
(Install fonts).	
	
You	will	find	the	VText	demo	scenes	in	the	Virtence/VText-folder.	VText	comes	with	
the	following	demo	scenes:	

	

	 VText	 5	

2	 Details	

1.2.1	StartScene	

StartScene	is	a	simple	animated	VText	scene	with	a	graphical	user	interface.	In	play	mode	
Unity	will	show	something	like	figure	2.	Its	intention	is	to	show	some	common	settings	for	
the	3D	and	layout	parameters.	
	

	

Figure	2-	StartScene	

1.2.2 TextureLayoutScene

Figure	3	shows	the	Unity	views	for	TextureLayoutScene.	This	shows	the	used	UV-Layout	
which	 has	 light	 baking,	 etc.	 in	 mind.	 See	 section	 3.2	 for	 detailed	 information	 about	
texture	layout.	

	

Figure	3	-	TextureLayoutScene	

	

	

	 VText	 6	

2	 Details	

1.2.3 AdditionalMonobehaviours

Figure	4	shows	a	small	scene	with	self-written	scripts	attached	to	each	letter	
of	the	text.	
	

	
Figure	4	-	Additional	Monobehaviours	

In	this	scene,	you	can	see	how	to	rotate	the	single	letters	around	their	own	
center	and	change	their	materials.	Furthermore,	you	can	highlight	any	letter	
of	 the	bottom	text	with	 the	mouse.	This	demonstrates	 the	usage	of	adding	
own	scripts	automatically	to	each	letter.	
	
1.2.4 Physics

This	 scene	 shows	you	how	 to	use	Colliders	 and	Rigidbodies	 for	 you	VText	
objects.	It	looks	like	figure	5.	
	

	
Figure	5	-	Physics	

Here	you	can	throw	small	balls	to	the	letters	of	the	VText.	This	demonstrate	
the	automatic	generation	of	Colliders	and	Rigidbodies	to	the	letters.	
	

	

	 VText	 7	

2	 Details	

1.2.5 Equalizer

Here	we	show	how	you	can	modify	the	bending	curves	of	a	VText	object	at	
runtime.	The	scene	will	look	like	in	figure	6.		
	

	
Figure	6	–	Equalizer	

The	text	in	this	scene	will	wiggle	to	the	sound	by	changing	its	bending	curves	
to	get	an	equalizer	effect.	
	
1.3 Adding VText objects to your scene
Clicking	on	the	GameObject/Virtence/VText menu	item	will	add	an	empty	child	to	
your	hierarchy,	which	contains	the	VTextInterface	component.	
	
The	Inspector	editor	pane	shown	in	Figure	7	will	allow	you	to	adjust	the	settings.	
	

	

Figure	7	-	Inspector	

We	describe	the	User	Interface	and	the	parameters	in	the	next	chapters.	

	

	 VText	 8	

2	 Details	

To	 work	 properly	 you	 should	 have	 at	 least	 one	 font	 installed	 in	 the	
Assets/StreamingAssets/Fonts	folder	because	for	new	texts	we	choose	the	first	font	we	
find	there	and	if	there	isn’t	any	we	can’t	generate	the	text.	

		 			
Note:	All	Fonts	in	that	folder	will	be	distributed	when	building	for	mobile	devices!	So,	
keep	only	fonts	which	are	required	in	your	project	to	reduce	the	memory	footprint.	
Also	be	aware	of	copyrights!	

	

	 	

	

	 VText	 9	

2	 Details	

2 User Interface
In	this	chapter,	we	will	describe	the	different	panes	of	the	User	Interface.		
	
2.1 Common
There	are	three	components	which	are	visible	all	the	time	(except	the	VText-
Logo	of	cause	J).		
	
The	first	component	is	the	text	input	field	which	looks	like	in	figure	8.	
	

	
Figure	8	-	Text	input	field	

This	allows	you	to	enter	the	text	which	will	be	generated.	Keep	in	mind	that	
this	input	field	has	no	word	wrapping	on	purpose	because	you	can	create	
multiline	text	with	VText.	To	do	so	you	need	to	press	the	return	key	explicitely	
to	start	a	new	line.		
	
The	second	component	which	is	always	visible	is	the	toolbar	(see	figure	9).	
	

	
Figure	9	–	Toolbar	

This	allows	you	to	switch	the	main	categories	of	a	VText	object.		
	 	

	

	 VText	 10	

2	 Details	

	
We	distinguish	between	the	following	categories	for	now:	

- Style	(fonts	and	materials)	
- Mesh	(everything	which	affects	the	3D	geometries	like	the	depth	of	

the	 letters,	 the	 bevel,	 shadow-casting	 or	 –receiving,	 tessellation-
quality,	etc.)	

- Layout	(here	we	handle	layout	parameters	like	alignment,	bending,	
size	and	spaces)	

- Physics	(add	colliders	or	rigidbodies	to	your	letters)	
- Scripts	(experimental!)	(add	any	Unity	components	to	your	letters,	

like	scripts,	animations,	sound,	etc.)	
	

We	explain	the	sections	in	the	following	chapter	in	detail.	
	
The	third	component	which	is	always	visible	is	the	Rebuild-button	like	
shown	in	figure	10.	
	

	
Figure	10	–	Rebuild	

You	can	see	this	button	as	a	fallback.	This	will	rebuild	all	aspects	mentioned	
above	of	your	VText	object.	
	
2.2 Style
Here	we	define	the	style	parameters	of	the	text.	The	inspector	view	for	the	
style	parameters	looks	like	figure	11.	
	

	
Figure	11	-	Style	

	
	

	

	 VText	 11	

2	 Details	

2.2.1 Font

Here	you	can	define	the	font	which	is	used	for	the	generated	geometry.	Keep	
in	 mind	 that	 only	 fonts	 are	 usable	 which	 are	 located	 at	 the	
Assets/StreamingAssets/Fonts folder.	 That’s	 because	we	want	 to	make	 sure	
that	 your	 fonts	 are	 distributed	 correctly	 if	 you	 build	 the	 application	 to	 an	
executable	for	any	provided	system.	
	
2.2.2 Size

This	will	define	the	size	of	the	generated	geometry	in	meters.		
	
2.2.3 Materials

To	understand	 the	materials,	 it’s	a	good	start	 to	 see	how	VText-letters	are	
organized.	Figure	12	shows	you	a	single	letter	with	its	components.	
	

	
Figure	12	-	Organization	of	a	letter	

	
The	blue	part	in	figure	12	shows	the	so	called		face	part.	The	gray	part	is	called	
bevel	and	is	a	smoothly	curved	surface	between	the	blue	and	the	red	part	…	
which	is	called	side.	And	that’s	exactly	what	the	several	materials	in	the	style	
section	describe.	You	can	define	a	material	for	each	of	those	parts.	

	

	 VText	 12	

2	 Details	

2.3 Mesh
The	 Mesh	 section	 allows	 you	 to	 adjust	 parameters	 which	 affects	 the	
generated	3D	geometry.	It	will	look	like	figure	13.	
	

	
Figure	13	-	Mesh	

Here	you	can	adjust	the	following	parameters:	
• Depth:	this	describes	the	depth	of	each	letter.	This	makes	your	text	

three	 dimensional.	 You	 can	 set	 the	 material	 for	 these	 faces	 by	
changing	the	Side	material	in	the	Style	section.	Setting	the	depth	to	0	
creates	a	2D	text	which	can	be	placed	in	the	3D	world	and	gives	us	a	
couple	of	performance	rele	

• Bevel:	this	is	the	smoothly	rounded	part	between	the	front-	or	back-
faces	and	the	side	of	each	 letter.	That’s	why	you	can	set	the	bevel	
size	 only	 if	 you	 have	 defined	 a	 depth	 greater	 than	 0.	 You	 can	
change	the	bevel	material	in	the	style	section.	

• Backface:	often	you	will	not	see	the	backfaces	of	the	text.	That’s	why	
we	do	not	generate	them	per	default.	But	if	you	bend	or	rotate	your	
text	 you	 maybe	 want	 to	 create	 the	 backfaces	 too.	 This	 parameter	
allows	you	to	switch	them	on	or	off.	If	you	enable	the	backfaces	we	
create	the	geometry	for	the	back	parts	of	the	letters	and	the	bevel	on	
the	backside	as	well.	

• Quality:	The	quality	parameter	allows	you	to	adjust	 the	number	of	
triangles	 generated	 for	 the	 3D	 text.	 Of	 cause,	 less	 triangles	means	
better	 performance	 but	 less	 smoothness.	 When	 creating	 the	
geometry,	we	mainly	adjust	the	curved	parts	of	the	letters.	

	

	 VText	 13	

2	 Details	

• Cast	shadows:	This	allows	you	to	specify	if	(and	how)	the	generated	
text	should	cast	shadows.	The	parameter	values	are	the	same	as	the	
cast	shadow	parameters	of	Unity’s	MeshRenderer	component.	

• Receive	shadows:	here	you	can	specify	if	your	texts	should	receive	
shadows	or	not	

• Use	 lightprobes:	 if	 your	 scene	 contains	 lightprobes	 then	 you	 can	
define	here	if	your	text	should	be	affected	by	them.	

• Create	 tangents:	 some	 shader	 (esp.	 normal	 or	 bumpmapping	
shader)	require	tangents	to	work	correctly.	If	you	use	such	shaders	
for	your	text	you	should	enable	this.	Keep	it	off	if	you	don’t	need	them.	
	

2.4 Layout
Within	this	section	you	can	adjust	all	parameters	which	change	the	layout	or	
bending	of	your	texts.	The	layout	section	will	look	like	figure	14.	
	

	
Figure	14	-	Layout	

2.4.1 Common

The	following	parameters	will	help	you	to	adjust	 the	 layout	of	your	text	 to	
your	needs:	

• Horizontal:	here	you	can	set	 the	main	 layout	of	your	 text	…	 if	you	
want	it	is	layouted	horizontally	or	vertically.	This	will	also	influence	
the	parameters	Major	and	Minor.	

	

	 VText	 14	

2	 Details	

• Major:	This	defines	the	alignment	of	your	text	depending	on	its	main	
layout	(horizontal	or	vertical).	If	it	is	set	to	horizontal,	then	the	Major	
alignment	works	in	x-direction	of	you	text.	If	it	is	set	to	vertical,	then	
the	Major	alignment	works	in	y-direction.	The	following	values	can	be	
set:	

o Base:	This	is	only	used	if	your	text	is	setup	horizontally	and	
only	 used	 for	 the	Major	 alignment.	 Then	 the	 pivot	 point	 of	
your	text	is	set	to	the	baseline	of	the	font.	In	all	other	cases,	it	
works	the	same	way	like	Start	(see	the	next	value).	

o Start:	The	pivot	point	of	your	text	is	set	to	the	top-left	of	the	
entire	text.	

o Center:	The	pivot	point	is	set	to	the	center	of	the	entire	text.	
o End:	The	pivot	point	 is	set	to	the	bottom-right	of	 the	entire	

text.	
o Block:	This	aligns	the	text	like	you	are	using	the	Start	setting	

but	it	will	set	the	space	between	words	in	a	way	that	all	lines	
have	equal	length.	(Note:	This	works	only	if	you	set	it	in	Major	
mode	 (horizontal	 and	 vertical)	 and	only	 if	 you	have	multiple	
lines.	Actually	we	do	NOT	trim	whitespaces	from	the	beginning	
or	 end	 of	 the	 line	 and	 they	 are	 taken	 into	 account	 for	 the	
calculation	…	just	because	maybe	you	intend	this.	Maybe	we	put	
in	a	parameter	for	this	later	or	switch	over	to	trim	whitespaces	
automatically.	 So	 if	 your	 results	 looks	 wrong	 please	 double	
check	if	you	have	whitespaces	at	the	beginning	or	end	of	line.)	

• Minor:	This	describes	the	alignment	in	exactly	the	opposite	direction	
of	the	Major	alignment.	So,	if	your	text	is	layouted	horizontally	then	
this	 describes	 the	 alignment	 in	 y-direction.	 If	 your	 text	 is	 layouted	
vertically	this	describes	the	alignment	in	x-direction.	The	values	are	
the	same	like	for	the	Major	alignment	(see	Major).	

• Line	space:	This	parameter	defines	the	distance	of	the	base	line	of	
one	line	to	the	base	line	tex	of	the	next	line.	This	means	that	a	line	
space	of	0	will	put	all	lines	on	top	of	each	other.	In	this	way,	you	can	
create	 overlapping	 texts	 too.	 A	 value	 of	 1	means	 the	 “normal”	 line	
space	as	they	are	defined	by	the	font.	A	value	of	2	for	instance	doubles	
the	distance	between	two	lines.	

• Letter	 space:	 Using	 this	 parameter	 you	 can	 adjust	 the	 distance	
between	two	letters.	A	value	of	0	means	that	there	is	no	extra	space	
between	the	letters.	They	are	rendered	“normally”.	

	

	

	 VText	 15	

2	 Details	

2.4.2 Bending

In	the	bending	section	of	the	layout	you	can	bend	your	text	in	a	couple	of	ways.	
All	methods	described	here	have	the	following	in	common.	To	bend	your	text	
we	use	Unity	Animation	Curves	which	also	allows	it	to	animate	these	curves	
and	 therefor	 animate	 the	 bending	 of	 the	 text.	 Furthermore,	 each	 bending	
allows	 you	 to	 align	 the	 single	 letters	 to	 your	 defined	 curve	 (the	 Circular	
Bending	will	always	align	your	letters	along	the	circle	…	but	we	will	come	to	
it	later).	
	

• Bend	XZ:	This	allows	you	to	bend	your	text	in	z	direction.	This	means	
that	your	text	will	stay	on	the	ground	but	you	can	change	its	direction	
along	z.	The	result	will	be	something	like	shown	in	figure	15.	

	

	
Figure	15	-	Bend	XZ	

• Bend	XY:	This	allows	you	to	bend	your	text	in	y	direction.	This	means	
that	your	text	will	move	up	and	down.	The	result	will	be	something	
like	shown	in	figure	16.	

	

	
Figure	16	-	Bend	XY	

	
• Circular	bending:	The	circular	bending	allows	you	to	bend	your	text	

around	a	(imaginary)	circle	or	a	part	of	it.	This	is	often	used	to	rotate	
a	text	around	a	sphere	or	cylinder.	We	bet	you	know	this	text	rotating	
around	the	earth	logo	like	in	figure	17?		

	

	

	 VText	 16	

2	 Details	

	
Figure	17	-	Circular	bending	example	

To	setup	a	circular	bending	you	can	change	the	following	parameters:	
o Start	angle:	this	will	set	the	start	position	of	your	text.	 It	 is	

defined	 in	 degrees	 around	 the	 circle.	 Values	 lower	 than	 0	
degree	and	higher	 than	360	degree	will	 result	 in	a	multiple	
bending	around	the	circle.		

o End	angle:	this	defines	the	end	position	of	your	text	on	the	
circle.	It	is	defined	in	degree	too.	Values	lower	than	0	degree	
and	higher	than	360	degree	will	result	in	a	multiple	bending	
around	the	circle.		

o Radius:	This	 defines	 the	 radius	 of	 the	 circle.	 Changing	 this	
parameter	moves	your	 text	 farther	away	 from	the	center	of	
your	VText	object.		

	
If	you	enable	the	Animate	radius	button	then	you	have	the	chance	to	
change	the	radius	along	your	text.	This	is	not	an	animation	per	se	(we	
will	 come	 to	 it	 later)	 but	 it	 uses	Unity’s	 animation	 curves	 again	 to	
modify	the	radius	along	your	text.	The	values	of	the	curve	should	be	
defined	in	x-direction	in	a	0-1	range	where	0	is	the	beginning	of	your	
text	and	1	is	the	end.	The	y-values	are	multiplied	with	the	radius	you	
defined	above.		
This	 allows	 you	 in	 a	 simple	way	 to	 bend	 your	 text	 like	 a	 spiral	 for	
instance	(see	figure	18)	
	

	

	 VText	 17	

2	 Details	

	
Figure	18	-	Change	radius	along	the	text	

Tip:	
There	 is	 no	 need	 to	 use	 just	 one	 of	 the	 parameters	mentioned	 above.	 Be	
creative	and	combine	them.		
This	way	you	can	combine	the	Bend	XY	curve	to	be	a	slope	and	additionally	
add	a	Circular	binding	like	described	before	to	get	a	tornado-bending	like	in	
figure	19.		
	

	
Figure	19	-	Tornado	example	

	
2.4 Physics
In	the	physics	section,	you	can	automatically	add	RigidBodies	and	Collider	
to	each	of	the	generated	letters.	This	allows	you	to	interact	with	them	later	or	
add	physic	behaviours	to	it.		
The	physics	section	will	look	like	in	figure	20.		
	

	

	 VText	 18	

2	 Details	

	
Figure	20	-	Physics	

	
Actually,	 we	 allow	 the	 generation	 of	 box-	 and	 mesh	 colliders	 with	 the	
common	parameters	like	they	are	defined	by	Unity.		
Also	 for	 rigidbodies	we	 provide	 you	with	 the	 common	parameters	 known	
from	Unity.		
See	the	Physics	example	scene	for	a	quick	start.	
	
2.4 Scripts
Be	careful,	this	section	is	experimental	and	can	lead	to	Unity	crashes!	
Here	we	want	to	give	you	the	possibility	to	add	arbitrary	components	to	each	
of	 the	 generated	 letters	 automatically.	 This	 would	 allow	 you	 to	 add	
components	 like	 Animators,	 AudioSources,	 your	 own	 scripts,	 etc	 to	 each	
letter	and	therefore	giving	you	much	more	 flexibility	 for	 later	usage	of	 the	
text.		
The	scripts	section	looks	like	figure	21.		
	

	
Figure	21	-	Scripts	

	

	 VText	 19	

2	 Details	

The	way	we	handle	 it	 is	that	you	create	a	reference	gameobject	(simply	an	
empty	gameobject)	and	add	all	components	you	want	to	it.	You	can	disable	
this	game	object	in	your	scene	so	it	does	not	affect	your	scene.		
On	this	reference	gameobject	you	can	adjust	all	settings	which	you	want	to	
have	on	each	letter.		
Now	drag	and	drop	your	reference	gameobject	into	the	Reference	object	
field	 in	 the	 script	 section.	 If	 new	 letters	 are	 generated	 we	 take	 all	
components	and	their	settings	 from	the	reference	object	and	copy	them	to	
the	new	generated	letter.		
	
Some	 components	 (and	 their	 subtypes)	 will	 not	 be	 copied	 because	 we	
generate	 them	 in	 VText	 or	 Unity	 does	 not	 allow	 it	 at	 all.	 The	 following	
components	will	not	be	copied:		

• Transform	
• Renderer	
• MeshFilter	
• Rigidbody	
• Collider	

We	also	know	that	adding	scripts	which	have	a	VTextInterface	as	a	public	
variable	(which	is	assigned	in	the	Inspector)	can	lead	to	deadlocks	which	
will	result	in	Unity	crashes.	There	is	no	problem	if	you	get	access	components	
in	your	scripts	by	using	the	GetComponent	methods.		
	
	 	

	

	 VText	 20	

2	 Details	

3 Programming Interface

All	 mentioned	 sections	 and	 parameters	 can	 be	 accessed	 by	 using	 the	
programming	interface	too.	This	will	allow	you	to	change	or	even	animate	
each	parameter	at	runtime.		
With	the	exception	of	the	choosen	font	and	the	size	of	the	generated	text,	all	
parameters	 can	 be	 found	 in	 the	 VTextInterface	 programming	 section	
corresponding	to	the	sections	in	the	VText	User	Interface.	The	choosen	font	
can	be	found	in	the	parameter	section	and	the	size	of	the	generated	text	
can	be	found	in	the	layout	section.	We	must	keep	it	this	way	for	backward	
compatibility	reasons.	
	
To	access	the	VText	 interface	you	can	use	the	GetComponent	method	from	
Unity	like:		
	

VTextInterface vi = GetComponent<VTextInterface>();

Or	you	can	create	a	public	variable	of	the	type	VTextInterface	and	drag	and	
drop	the	VText	interface	of	your	text	into	it	in	the	Inspector.	
	
3.1 Sections
Corresponding	to	the	VText	User	Interface	we	splitted	up	the	Programming	
Interface	into	the	same	sections.		
	
3.1.1 VTextInterface parameter

	
The	following	aspects	can	be	changed	by	using	the	VTextInterface	class:	

Table	1:	VTextInterface	

Property	 Type	 Description	
RenderText	 string	 The	Text	to	generate.	
parameter	 VTextParameter	 Mesh	construction	parameter.	
layout	
Physics	
AdditionalComponents	

VTextLayout	
VTextPhysics	

VTextAdditionalComponents	

Text	layout	parameter.	
The	physics	paramter	
Additional	components		

	

	 VText	 21	

2	 Details	

3.1.2 Mesh parameter

The	following	aspects	can	be	changed	by	using	the	mesh	parameters	section	
of	the	Programming	Interface:	

Table	2:	Mesh	parameter	

	
You	can	access	them	by	using	something	like	the	following:	
	

VTextInterface vi = GetComponent<VTextInterface>();
vi.RenderText = “My text”;

// this must be in Assets/StreamingAssets/Fonts
vi.parameter.FontName = “MyFont.ttf”;
vi.parameter.Depth = 1.0f;
vi.parameter.Bevel = 0.03f;
vi.parameter.Backface = true;

	
	
3.1.2 Layout parameter

To	access	the	layout	specific	parameters	you	can	change		the	following	parts		
of	the	VTextInterface.	You	can	access	it	by:		
	

VTextInterface vi = GetComponent<VTextInterface>();
vi.layout.Major = VTextLayout.align.Center;

for instance.

Property	 Type	 Description	
Depth	 float	 The	relative	depth	of	extruded	glyph	
Bevel	 float	 Outline	width	and	depth–shift	
Backface	 bool	 Will	generate	back	side	if	true	
GenerateTangents	 bool	 Will	generate	tangents	on	each	glyph	if	

true	
Fontname	 string	 The	font	file	name	

	

	 VText	 22	

2	 Details	

Table	3:	Layout	parameter	

3.1.3 Physics

Here	you	can	access	the	physic	parameters	of	your	text.	To	change	them	you	
can	do	something	like:	

VTextInterface vi = GetComponent<VTextInterface>();
vi.Physics.Collider=VTextPhysics.ColliderType.Mesh;

	
3.1.4 Scripts

In	the	same	way	you	can	access	the	Scripts	section	of	the	VText	interface:	

VTextInterface vi = GetComponent<VTextInterface>();
vi.AdditionalComponents.AdditionalComponentsObject = myRefObj;	
	

	

Property	 Type	 Description	
Horizontal	 bool	 Major	layout	direction.	Vertical	layout	if	

false.	
Major	 align	 Major	layout	mode.	
Minor	 align	 Minor	layout	mode.	
Size	 float	 Local	scaling	factor	for	each	glyph.	
Spacing	 float	 Local	scaling	factor	for	minor	adjustment.	
CurveXZ	 AnimationCurve	 Z–Position	AnimationCurve.	
OrientationXZ	 bool	 Text	faces	tangent	in	Z	if	true.	
CurveXY	 AnimationCurve	 Y–Position	AnimationCurve.	
OrientationXY	 bool	 Text	faces	tangent	in	Y	if	true.	
CastShadows	 bool	 Generated	glyphs	will	cast	shadow.	
ReceiveShadows	 bool	 Generated	glyphs	will	receive	shadow.	
UseLightProbes	 bool	 Text	will	use	Light	Probes	if	available.	

	

	 VText	 23	

2	 Details	

3.2 Textures
The	UV–Coordinates	of	each	glyph	are	constructed	in	a	light	mapping	conformal	way.	
	

	

Figure	22	-	Texture	layout	

As	shown	in	Figure	22,	the	front	face	consumes	the	yellow	UV–range	(0,0)...(0.5,0.5).	The	

blue	UV–range	(0,0.5)...(0.5,1.0)	covers	the	backface	area.	Each	contour	side	covers	an	U–

range	of	(0.5,0.5+n∗0.1)	where	n	is	the	index	of	active	contour.	Bevel	range	is	dependant	
on	 its	 amount,	 and	whether	backface	 rendering	 is	 enabled.	The	V–range	 is	 normalized	
from	 the	 length	of	 the	 longest	 contour.	 Figure	23	 shows	 the	 resulting	unlit	material	 in	
Unity.	

	

Figure	23	-	Textured	VText	

	
You	may	wonder	why	front-	and	back–face	layout	covers	such	a	small	area	in	the	UV–

range.	It’s	because	the	maximum	glyph	size	of	DroidSans.ttf is	that	much	larger	than	
the	common	used	glyphs.	Other	fonts	may	show	different	ranges.	

	

	 VText	 24	

2	 Details	

3.3 Performance
As	long	as	you	are	using	only	2D–Text1	all	VText	objects	referencing	the	same	font	use	only	
one	dictionary	for	glyph	lookup.	So	Unity	is	able	to	batch	most	of	your	text,	even	if	some	
use	different	sizes.	
3D–Text	requires	a	separate	glyph	dictionary	for	each	VText	object.	So	batching	is	only	

possible	in	VText	itself.	
It	is	generally	no	good	idea	to	change	parameters	at	runtime,	which	require	a	complete	

rebuild	of	the	glyphs2!	Especially	text	with	a	lot	of	different	glyphs	will	need	some	time	to	
rebuild.	A	change	of	 layout	parameter	is	not	that	costly,	because	no	rebuild	of	glyphs	is	
required.	
Depending	on	the	settings	of	Need	Tangents,	extra	attributes	are	generated.	This	is	only	

required	if	one	of	your	materials	contains	a	bumpmapping	shader.	For	best	performance	
turn	it	off	if	not	required.	
If	the	parameter	Backface	is	turned	on,	additional	faces	are	generated	for	each	glyph.	If	

you’ll	never	see	the	backfaces	in	your	scene,	turn	it	off.	

3.4 Build
If	 you	 change	 or	 set	 the	 name	 of	 the	 font	 via	 script,	 you	 should	 be	 aware	 of	 the	 case	
sensitivity	of	filenames	on	non	Windows	based	operating	systems!	If	your	text	will	not	
show	up	in	your	build,	first	check	the	right	spelling(including	case)	of	the	fontname.	

																																								 																					
1	depth	and	bevel	zero	
2	such	as	changing	Depth	or	Bevel	

	 2	Details	

25	 VText	

4 Legal
This package is copyright	© 2014 - 2017 by Virtence GmbH.	

4.1 3rd party
This	package	uses	the	following	3rd	party	products:	

freetype2	

Portions of this software are copyright 2014 The
FreeType Project (www.freetype.org). All rights
reserved.	

Fonts	

This package contains the following fonts, which are licensed under the SIL
Open Font License:
	

• CostaRica.otf	
• Dotrice-Bold-Condensed.otf	
• Lack.otf	
• Lobster.otf	
• Segment14.otf	
• Xolonium-Bold.otf	
• RacingSansOne-Regular.ttf	

